An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry

نویسندگان

  • Jack L. Ziegler
  • Ralf Deiterding
  • Joseph E. Shepherd
  • D. I. Pullin
چکیده

A hybrid weighted essentially non-oscillatory (WENO)/centered-difference numerical method, with low numerical dissipation, high-order shock-capturing, and structured adaptive mesh refinement (SAMR), has been developed for the direct numerical simulation of the multicomponent, compressive, reactive Navier-Stokes equations. The method enables accurate resolution of diffusive processes within reaction zones. The approach combines time-split reactive source terms with a high-order, shock-capturing scheme specifically designed for diffusive flows. A description of the orderoptimized, symmetric, finite difference, flux-based, hybrid WENO/centered-difference scheme is given, along with its implementation in a high-order SAMR framework. The implementation of new techniques for discontinuity flagging, scheme-switching, and high-order prolongation and restriction is described. In particular, the refined methodology does not require upwinded WENO at grid refinement interfaces for stability, allowing high-order prolongation and thereby eliminating a significant source of numerical diffusion within the overall code performance. A series of oneand two-dimensional test problems is used to verify the implementation, specifically the high-order accuracy of the diffusion terms. One-dimensional benchmarks include a viscous shock wave and a laminar flame. In two space dimensions, a Lamb-Oseen vortex and an unstable diffusive detonation are considered, for which quantitative convergence is demonstrated. Further, a two-dimensional high-resolution simulation of a reactive Mach reflection phenomenon with diffusive multi-species mixing is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

An Adaptive Semi-Implicit Scheme for Simulations of Unsteady Viscous Compressible Flows

A numerical scheme for simulation of unsteady, viscous, compressible flows is considered. The scheme employs an explicit discretization of the inviscid terms of the N avier-Stokes equations and an implicit discretization of the viscous terms. The discretization is second order accurate in both space and time. Under appropriate assumptions, the implicit system of equations can be decoupled into ...

متن کامل

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

Calculation of Complicated Flows, Using First and Second-Order Schemes (RESEARCH NOTE)

The first-order schemes used for discretisation of the convective terms are straightforward and easy to use, with the drawback of introducing numerical diffusion. Application of the secondorder schemes, such as QUICK scheme, is a treatment to reduce the numerical diffusion, but increasing convergence oscillation is unavoidable. The technique used in this study is a compromise between the above-...

متن کامل

High-order solution-adaptive central essentially non-oscillatory (CENO) method for viscous flows

A high-order central essentially non-oscillatory (CENO) nite-volume scheme in combination with a block-based adaptive mesh re nement (AMR) algorithm is proposed for solution of the Navier-Stokes equations on bodytted multi-block mesh. The spatial discretization of the inviscid (hyperbolic) term is based on a hybrid solution reconstruction procedure that combines an unlimited high-order k-exact ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 230  شماره 

صفحات  -

تاریخ انتشار 2011